Kohle aus europäischen und amerikanischen Bergwerken war der Universal-Brennstoff der Industrialisierung – trotzdem spielten technische Innovationen in der Geschichte des Bergbaus lange eine unbedeutende Rolle. Ursache war das anhaltende Überangebot an Arbeitskräften: Die Gruben-Besitzer konnten höhere ... mehr
Kohle aus europäischen und amerikanischen Bergwerken war der Universal-Brennstoff der Industrialisierung – trotzdem spielten technische Innovationen in der Geschichte des Bergbaus lange eine unbedeutende Rolle. Ursache war das anhaltende Überangebot an Arbeitskräften: Die Gruben-Besitzer konnten höhere Förderleistungen einfach durch Anstellung weiterer Arbeiter erreichen. Aus demselben Grund konnten sie sich auch sehr lange einer Verbesserung der katastrophalen Arbeitsbedingungen entziehen.
So blieben die technischen Entwicklungen des Mittelalters, die vor allem aus dem Silber- und Gold-Bergbau Mitteleuropas stammten, für Jahrhunderte wegweisend. Energie lieferte die Wasserkraft: Um das Wasser zu heben, das in der Tiefe in die Gruben eindrang, installierte man über und unter Tage große Wasserräder und verband sie durch ausgeklügelte Gestänge mit Saugpumpen. Die abgebauten Erze wurde ebenfalls mithilfe der Wasserkraft nach über Tage gefördert. Später baute man Stauteiche, um von der schwankenden natürlichen Wasserversorgung unabhängig zu werden: Der Okerteich im Harz, um 1720 entstanden, gilt als erste Talsperre Europas.
Zu dieser Zeit waren die oberflächennahen Bodenschätze vielerorts abgebaut, doch in größeren Tiefen brauchte man immer größere Wasserräder zum Antrieb der Pumpen. Eine effizientere Lösung bot die Wassersäulenmaschine, die 1731 in Frankreich vorgestellt wurde: Aus großer Höhe herabstürzendes Wasser stieß einen Kolben nach unten, der nach dem Arbeitstakt entleert wurde und wieder nach oben stieg. Die entscheidende Innovation war jedoch die Dampfmaschine. 1712 wurde die erste, entwickelt von Thomas Newcomen, für die Hebung von Grubenwasser in einer Zeche bei Wolverhampton genutzt. Andere britische Bergwerke zogen rasch nach. Newcomens Dampfmaschinen fraßen zwar Unmengen Brennstoff, aber was machte das, da sie doch direkt über den Kohlevorkommen standen? Auf dem Kontinent kamen nur einige in den belgischen Revieren um Lüttich und Mons zum Einsatz. Dank Verbesserungen an Newcomens Modell und neuer Maschinen von James Watt setzte sich die Dampftechnik um 1800 schließlich durch.
Die Kohle-Gewinnung war damals bereits zum führenden Zweig des Bergbaus geworden. In Großbritannien war es schon 1709 gelungen, Koks aus Steinkohle zu gewinnen. Gegen Ende des Jahrhunderts hatte sich der neue Brennstoff in der Eisen-Verhüttung weithin verbreitet. Damit schnellte die Kohlenachfrage auf der britischen Insel rapide nach oben: Weitere Verbesserungen der Abbautechnik waren nötig. Die Förderung wurde mit Dampfmaschinen effizienter, zudem ersetzte man die alten Förderseile aus Hanf durch Drahtseile, die 1834 im Harzer Metallerz-Bergbau entwickelt worden waren. In britischen Kohlezechen wurden Aufzüge in die Förderschächte eingebaut, obendrüber stellte man hölzerne Fördergerüste für die Seilscheibe auf.
Bei der Bewetterung wurden die neuen technischen Möglichkeiten aus rein wirtschaftlichen Gründen nicht umgesetzt. Frischluft brauchen ja nicht nur die Bergleute unter Tage, sondern damit lässt sich auch die Konzentration entzündlicher Grubengase, der „schlagenden Wetter“, wirksam verringern. Daher wurden 1807 in britischen Revieren Luftpumpen erprobt, doch den Grubenbesitzern war die Investition zu hoch. Weiterhin kamen viele Bergleute bei der Explosion von Grubengasen zu Tode. Auch das offene Geleucht - Kerzen und Öllampen - trug zum Explosionsrisiko bei. Der Wissenschaftler Humphry Davy entwickelte 1815 eine erste wirksame Sicherheitslampe, deren Flamme durch ein hauchdünnes Drahtgitter vom Grubengas abgeschirmt war.
Die Arbeit unter Tage blieb hochgefährlich und extrem gesundheitsschädlich: durch das Risiko von Schlagwetter-Explosionen oder Deckeneinbrüchen und durch die kräftezehrende Handarbeit. Der Hauer wurde mit Hacke, Eisen und Schlägel in Strecken geschickt, die mangelhaft gesichert, schlecht belüftet und manchmal gerade so hoch waren, dass er darin liegen konnte. Die Kohle kam dann zum Transport in Körbe oder auf niedrige Wagen. Diese „Hunde“ wurden von Pferden über hölzerne oder eiserne Schienen gezogen – soweit die Strecken hoch genug waren: Andernfalls mussten Menschen die Wagen stoßen und ziehen. In britischen Kohlegruben bewegten oft auch Frauen und Kinder, auf allen Vieren kriechend, Kohle-Lasten von bis zu 250 Kilogramm.
Seit Anfang des 19. Jahrhunderts wurden zahlreiche neue Abbau-Maschinen patentiert. Der Engländer Richard Trevithick erfand einen rotierenden, dampfgetriebenen Bohrer, dann folgten Kolben-Bohrer nach dem Vorbild der Dampfmaschine. Die Geräte hätten die Arbeit des Hauers erleichtert, doch der Aufwand für die Energieversorgung unter Tage war den Bergwerksbesitzern zu teuer. Ein Fortschritt zeichnete sich erst durch den Druckluftantrieb ab, der 1853 erstmals eingesetzt wurde.
Seit den 1840er Jahren entstanden vor allem auf dem Kontinent massive Fördertürme in Bruchstein- oder Ziegelmauerwerk. Sie konnten die Zugkräfte des Förderseils, das in immer größere Tiefen hinabgelassen wurde, besser auffangen als die alten, hölzernen Konstruktionen. Die „Malakow-Türme“, nach einem Fort auf der Krim benannt, mussten oft schon nach wenigen Jahrzehnten mit einem Stahlgerüst erhöht werden – bis man sie gegen Ende des Jahrhunderts schließlich durch noch höhere Stahlgerüste ersetzte.
Um die Wende zum 20. Jahrhundert verbreiteten sich in den USA und Großbritannien allmählich Schrämmaschinen, eine Entwicklung britischer Innovatoren: Mit Meißeln auf beweglichen Scheiben, Stangen oder Ketten ausgerüstet, schlugen die Maschinen unterhalb der Kohle den „Schram“ ins Gestein: einen waagerechten Spalt, der das Abhauen der Kohle erleichterte. Den Bergleuten brachten sie eine physische Arbeitserleichterung, aber eine neue Belastung durch den Lärm. Außerdem übertönten sie die Geräusche des Deckgebirges, die Einstürze ankündigten. Man trieb die Schrämmaschinen zunächst mit Druckluft an. Nachdem man Elektromotoren so kapseln konnte, dass weder Funkenflug von ihnen ausging noch Schmutz eindrang, folgte die Umstellung auf Elektrizität.
Wo die Kohlevorkommen weicher waren, erwies sich ein druckluft-getriebener Abbauhammer als vorteilhaft. In belgischen Steinkohlegruben entwickelt, revolutionierte er nach dem Ersten Weltkrieg auch den Bergbau an der Ruhr – und allmählich zog das Ende der untertägigen Handarbeit herauf, die seit dem Mittelalter fast unverändert betrieben worden war.
Die Kohle wurde vom Abbauort nun zunehmend über Rutschen abtransportiert, die an Ketten hingen und mithilfe von Pressluft geschüttelt wurden. In den 1920er Jahren begann man, Bergwerke mit elektrisch angetriebenen Förderbändern auszurüsten. Durch Strecken mit größerem Durchmesser fuhren Grubenbahnen mit Elektrolokomotiven. Für den Abbau benutzte man 1934 in Großbritannien erstmals einen Schrämlader, der die Kohle in einem Arbeitsgang lösen und und verladen konnte. Die Alternative für weichere Vorkommen war der Kohlenhobel, in Frankreich und den USA erprobt, von westfälischen Ingenieuren 1937 zur Serienreife gebracht: Er hobelte die Kohle ab, während er an der Flözwand entlanggezogen wurde und beförderte sie gleich auf ein Förderband. Ab den vierziger Jahren begann dann die vollmechanisierte Kohlegewinnung.
Welterbe Bergbau-Park von Almadén
Parque Minero de Almadén
Cerco San Teodoro
13400
Almaden (Cuidad Real), Spanien
Bergbaupark Riotinto
Parque Minero de Riotinto
Plaza del Museo s/n
21660
Minas de Riotinto, Spanien
Museum der Eisen- und Stahlindustrie und des Bergbaus von Kastilien und Leon
Museo de la Siderurgia y la Mineria de Castilla y Leon (MSM)
Plaza de San Blas 1
24810
Sabero, Spanien
Zeche Pozo Soton
Pozo Soton
Linares, AS-17
33950
San Martin del Rey Aurelio, Spanien
Bergbaumuseum des Baskenlandes
Museo de la Minería del País Vasco
Barrio Campodiego s/n
48500
Abanto-Zierbena, Spanien
'Ruta de la experiencia industrial' von As Pontes
As Pontes Experiencia Industrial
Parque municipal, s/n
15320
As Pontes de García Rodríguez, Spanien
Bergwerk und Museum Arnao
Museo de la Mina de Arnao
La mina, 7
33450
Castrillón, Spanien
Bergbaumuseum Samuño-Tal
Ecomseo Minero del valle de Samuño
El Cadavíu
33909
Ciaño, Spanien
Asturisches Bergbau- und Industriemuseum
Musea de la Minería y de la Industria de Asturias
El Trabanquin
33940
El Entrego, Spanien
Bergbaupark "Zeche Julia"
Parque de la Minería "Pozo Julia"
calle Otero, 61
24420
Fabero, Spanien
Bergwerk Arditurri
Arditurriko meazuloak
Arditurri Bidea, 3
20180
Oiartzun, Spanien
Mutiloa-Bergwerk und Ormaiztegi-Viadukt
Muxika Egurastokia
20212
Ormaiztegi, Spanien
Bergbaumuseum Cercs
Museu de les Mines de Cercs
Plaça Sant Romà
08698
Sant Corneli, Spanien
Turón-Tal
Pozu Espinos
Valle de Turón
Caserio Preximir 4
33610
Santandrés, Spanien
Bergbaugebiet Aizpea - Der Eisenberg von Zerain
Herriko plaza, z/g
20214
Zerain, Spanien
Technik- und Berbaupark Minero MWINAS
MWINAS Parque Tecnológico Minero
Paseo de las Minas s/n
Andorra, Spanien
Bergbaumuseum Bellmunt del Priorat
Museu de les Mines Bellmunt del Priorat
Carretera de la Mina
43738
Bellmunt del Priorat, Spanien
Bergbauregion Sierra Almagrera
Information:
Tourist office
Plaza De La Contitucion
04610
Cuevas del Almanzora, Spanien
Bergbaupark La Unión
Parque Minero de la Unión
Carretera del 33
30360
La Unión, Spanien
Bergbaulandschaft-Besucherzentrum
Centro de Interpretación del Paisaje Minero
Paseo de Linarejos
23700
Linares, Spanien
Bergwerksmuseum Mequinenza
Museo de la Mina de Mequinenza
Av. María Quintana, 3
0170
Mequinenza, Spanien